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Abstract

This study presents a novel approach to determine the distribution of compound flood events composed of
storm surge and static water levels along the Great Lakes shoreline. A mixture distribution of the bulk
(Student-t) and tail (GPD-negative binomial) components of storm surge is estimated in a hierarchical
Bayesian modeling framework. Parameters are modeled across the entire shoreline using Gaussian
processes and hourly gauged data, with priors for spatial autocorrelation informed by numerical output
from a lake hydrodynamic model. The distribution of total water levels is obtained through Monte Carlo
sampling that combines the estimated distribution of surge with stochastic traces of static lake levels that
account for water level management, seasonality, and plausible variability in water supplies. The
approach can therefore support coastal flood risk assessments in cases when the distribution of static
water levels changes are due to altered water level management or climate change. The model is applied
in a case study on Lake Ontario. Results suggest that spatial variability in parameter estimates varies
significantly by month and mixture distribution component. Evaluations of performance indicate the
model is able to capture adequately storm surge behavior at gauges across the lakeshore, even under
cross-validation. A frequency analysis of total water levels at two ungauged sites is presented, with
specific attention given to the implications of model assumptions on uncertainty in design events. The

paper concludes with a discussion of model limitations and avenues for future work.
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Introduction

Communities living along the Great Lakes shoreline have experienced rapidly rising water levels since
2015. Between 2019 and 2020, water levels on all five of the Great Lakes have hit record highs compared
to data over the last 100 years. Damages to homes, businesses, and agricultural fields have been
substantial (IJC-LOSLR Board, 2018; Gronewold and Rood, 2019). These record-setting floods have left
shoreline communities unsure of how to assess and prepare for flood events in the future, and highlight
the need for timely and accurate flood risk information along the Great Lakes shoreline. The goal of this
study is to advance statistical methods that can provide this information and to demonstrate these methods

in a case study on Lake Ontario.

Coastal flooding on the Great Lakes results from a combination of processes. A major driver of flooding
is the static lake level, or still water level, defined as the water level that is experienced in the absence of
wind and waves. Static level dynamics on the Great Lakes manifest primary at weekly and longer
timescales, and exhibit a strong annual cycle linked to seasonal changes in precipitation, temperature,
evaporation, snow accumulation and melt, and runoff (Lenters, 2001). Long-term shifts in water supplies
also drive significant static water level fluctuations on inter-annual to decadal timescales (Gronewold and
Stow, 2014) which may become more intense under climate change (Gronewold and Rood, 2019). In
addition to these natural sources of variability, static levels on all lakes, but especially Lake Superior and
Lake Ontario, are influenced by management decisions at control points on the St. Marys River and St.
Lawrence River, respectively. Operational policies at these control points have recently been updated
(1JC, 2012; 1IC, 2014), complicating the use of historical static levels as a source of data to quantify

future flood risk.

Wind-driven storm surge and seiches are another primary driver of flood risk along the Great Lakes

coastline. These processes manifest at sub-hourly to daily timescales and often are linked to the passing of
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extratropical cyclones or other storm systems (Trebitz, 2006). Winds exert horizontal force on the water
surface, inducing surface currents that cause water levels to rise downwind and fall upwind. Storm surge
dynamics vary considerable across the Great Lakes shoreline, and depend on a variety of local conditions.
For instance, position relative to a storm track greatly influences the storm surge experienced at a location
(Danard et al., 2004; Mahdi et al., 2019). Long-term storm surge risk is influenced significantly by fetch
length, lake depth, and the climatological orientation of storm tracks and associated wind speed and
direction (Danard et al., 2003). Locally, physical features at the site that influence local water level
change over short durations can also influence storm surge (Irish et al., 2011). Similar factors that
influence storm surge also dictate offshore wave heights and their propagation onshore, which can further

add to flood risk along the shoreline.

Floods linked to extended periods of high static water levels tend to occur during the late spring and
summer, while storm-related flooding linked to surge occurs most often during the spring and autumn
when storm activity is greatest (Angel, 1995). The out-of-phase seasonality of static levels and surge
produces a negative correlation between the two (i.e., higher surge events at lower static lake levels), but
the causal drivers of the two processes are generally considered independent. That is, extended shifts in
precipitation, runoff, and evaporation that influence static levels over weeks to years exhibit little,
systematic relationship with the occurrence of individual storm systems that drive large surge events on
hourly-to-daily timescales (Lee, 1993). However, moderate to high static levels and surge events can
overlap, combining to form extreme total water levels with significant implications for flood damage
along the coastline (Meadows et al., 1997). This study focuses on characterizing the risk of these

compound events by modeling and then combining the distribution of both static levels and surge.

A significant body of literature has explored how to estimate the distribution of total water levels along
coastlines, particularly along the ocean coast. One family of approaches, known as indirect methods,
separately models processes that compose total water levels (e.g. astronomical tide, storm surge) and then
recombine distributions for those processes using convolution (Tawn and Vassie, 1989; Tawn, 1992).
These indirect approaches tend to outperform direct methods that fit distributions directly to total water
levels (Haigh et al., 2010). An important aspect of indirect methods is the consideration of both the
central range (bulk) and the extremes within the distribution of individual processes, such as storm surge.
Both parts of the distribution are important, because even moderately high levels of surge within the bulk

distribution can combine with high values in other processes (e.g., tide, static levels) to cause total water



levels that induce flooding. Therefore, mixture models have been forwarded as a useful tool to separately
model the central range and tails of the distribution, and then to combine those distributions to model the
full range of values (Behrens et al., 2004; Mazas et al., 2014). For the extremes, it is now widely
recommended to use a peaks-over-threshold (POT) approach based on the Generalized Pareto — Poisson
model (Hawkes et al., 2008), while for bulk values several distributions have been considered (Mendes

and Lopes, 2004; Behrens et al., 2004; MacDonald et al., 2011).

Another major issue is the estimation of total water level distributions along entire stretches of coastline,
even in the absence of gauged data. One common approach is to use numerical predictions of coastal
processes from hydrodynamic models that are gridded continuously along the coastline. Extreme value
distributions can be fit directly to these modeled data (Flather et al., 1998). However, non-trivial error can
result from systematic biases in the numerical model structure, errors in input variables to the model, or
spatial averaging over a coarse grid. Therefore, other efforts have been forwarded to use information from
the numerical model, but after adjustments made in a calibration process. For instance, the spatial revised
joint probability method (SRJIPM; Dixon and Tawn, 1995; Dixon and Tawn 1997; Swift, 2003) exploits
spatial autocorrelation in tidal and surge components of sea levels from numerical storm surge
predictions, but first corrects for errors in the numerical model based on comparisons against gauged data.
Alternatively, one could forgo correcting the numerical storm surge predictions, and instead only use
these data indirectly to estimate spatial autocorrelation in surge properties, which could then be used in a
spatial probability model of surge based strictly on gauged data. This latter approach has not yet been
explored in the literature, but provides an alternative to a complex, post-process calibration of numerical

model output.

To the author’s knowledge, certain aspects of the methods discussed above have not been extended to
extreme total water level estimation along the Great Lakes coastline. For instance, as part of the Great
Lakes Coastal Flood Study, recently updated guidance from FEMA suggests the following steps (Melby
et al., 2012; Nadal-Caraballo et al., 2012; FEMA, 2014): 1) define a composite set of storms that
adequately represent the range of surge and wave conditions across a lake; 2) simulate each storm using
high-resolution, lake-wide 2-D storm surge and wave models, applied with historical static lake levels that
existed at the time of the storm; and 3) conduct POT-based statistical analyses of the water level and wave
conditions simulated under the aforementioned storms. The above methodology has several important

benefits, including the joint consideration of static level, surge, and wave variability in the frequency



analysis of total water levels. However, it is also notable that the quantification and propagation of storm
surge biases in the 2-D hydrodynamic model and forcing meteorological data are not addressed in the
methods described in FEMA (2014) although other sources of uncertainty are considered. In addition, the
approach depends on historical static water levels observed during the selected set of storms, which may
not be applicable if the management of static lake levels changes (as was recently the case for Lake
Superior and Lake Ontario; IJC, 2012; IJC, 2014). Further, paleo-reconstructions have found that water
supply and static water level variability on the Great Lakes can be significantly larger than the variability
observed in the instrumental record (Wilcox et al., 2007; Wiles et al., 2009; Argyilan et al., 2010; Ghile et
al., 2014). This suggests that extreme event analyses limited to that instrumental record may

underestimate the frequency of extreme total water levels.

In response to these methodological gaps, this study presents a novel approach to estimate the distribution
of storm surge and total water levels across the Great Lakes shoreline, with an application to Lake
Ontario. There are two primary contributions of this work. First, a hierarchical Bayesian model is
developed to estimate the distribution of storm surge at any location along the lakeshore. This model
indirectly leverages information on the spatial autocorrelation of coastal processes from a lake
hydrodynamic model through the careful construction of prior distributions while avoiding direct use of
numerical model output in parameter estimation to minimize the propagation of numerical model bias.
Second, this work combines the results of the Bayesian surge model with stochastic traces of static water
levels that account for seasonal lake level management and better capture the variability of water supplies
compared to the instrumental record. The approach results in a frequency analysis of total water level
events, with uncertainty, at any location along the shoreline. Importantly, the choice to model separately
storm surge and static levels and then to combine them afterwards to assess compound flood risk, can
support coastal flood risk assessments in cases when the static water level distribution changes due to

climate change or altered water level management.

Data

The methods developed in this work are applied to the shoreline of Lake Ontario. Three datasets are used

throughout this analysis, summarized here and then described in more detail below:

* Hourly, gauged-based storm surge: these data are the primary dataset used to fit the Bayesian

model of storm surge.



* Hourly, model-based storm surge: these data are only used indirectly to develop prior
distributions of spatial autocorrelation in the Bayesian model.
* Quarter-monthly, model-based static levels: these data are used to quantify static water level

variability under the most recent water level management plan for Lake Ontario.

Hourly, gauge-based storm surge

Hourly water levels between January 1, 1980 and December 31, 2019 are collected from eight long-term
gauges located in both the United States (Olcott, Rochester, Oswego, and Cape Vincent NY) and Canada
(Kingston, Cobourg, Toronto, and Port Weller in the Province of Ontario). These data contain infrequent
missing values (less than 0.5% for most gauges), which are gap-filled by linear interpolation. Hourly
storm surge is calculated at each gauge by first calculating a smoothed hourly water level series using a
Gaussian filter with a window length of seven days. The smoothed series is then subtracted from the
original hourly data to develop an hourly series of storm surge. These storm surge data form the primary
dataset used to fit the Bayesian model of storm surge at any location around Lake Ontario. The 7-day
smoothing window is selected because static water levels (described below) are available on a quarter-
monthly (~7.6 day) time step, and so surge defined using a 7-day window ensures that the sum of quarter-
monthly static levels and hourly surge events approximate hourly total water levels. However, the results
of the analysis do not change significantly if surge is defined using an alternative smoothing window. For
instance, time series of surge defined using a 3-day vs. 7-day smoothing window have Pearson
correlations between 0.95 and 0.98 across the eight gauges, and parameter estimates for probability

models of surge (described below) are extremely similar.

Hourly, model-based storm surge

Hourly surge data is also collected from the Lake Ontario Operational Forecast System (LOOFS) that is
managed by NOAA’s National Ocean Service. The LOOFS is based on a gridded hydrodynamic model
that uses atmospheric observations and weather prediction guidance to produce three-dimensional
predictions of water temperature and two-dimensional forecasts of water levels for Lake Ontario (Chu et
al., 2011). The LOOFS also predicts deviations from the average lake level, i.e. seiche and storm surge
events. The LOOFS provides two sources of data, short-term (1-24 hour) forecasts and nowcasts, the
latter of which is based on near real-time meteorological observations and provides a continuous estimate

of present conditions across the lake. This study utilizes the nowcast data for hourly water level



deviations from the lake level average (i.e., storm surge). These gridded data are available along the entire
coastline at a 5 km resolution (M=178 grid cells in total) from January 1, 2006 to December 31, 2019.
The LOOFS hourly surge data is used indirectly in the Bayesian model of storm surge, by forming the

basis of prior distributions for spatial autocorrelation used in that model.

Quarter-monthly, model-based static levels

Finally, this work utilizes static water level data that represents average Lake Ontario levels on a quarter-
monthly time step. Water levels on Lake Ontario are regulated through operations of the Moses Saunders
Dam on the St. Lawrence River. In January 2017, the International Joint Commission (IJC) changed the
regulation plan of the lake that had been in place since the early 1960’s. The new regulation plan, dubbed
“Plan 2014, was designed to restore some of the natural variability of Lake Ontario water levels needed
to support coastal wetlands. The change in regulation plan complicates the use of historic static water
level observations in the estimation of future design events for the lake. That is, the variability of static
water levels under Plan 2014 and the old management plan are significantly different, and therefore it
would be inappropriate to conduct a flood analysis for Lake Ontario using observed data that occurred
under the old plan. Unfortunately, there is a paucity of gauge-based observations (~4 years; 2017-2020)
that can be used to reflect static water level variability under Plan 2014. Therefore, this study uses
modeled static water levels under Plan 2014 in place of the historical record. These data are only available
at a quarter-monthly time step, because the entire modeling framework for simulating lake levels under
Plan 2014 was developed at this time step (IJC, 2014). I note that these quarter-monthly data are not
aggregated from hourly gauge-based data; rather, the quarter-monthly time step is the native temporal

resolution of the Lake Ontario water level management simulation model.

Two sets of modeled static water level data are utilized in the analysis. The first dataset represents static
water levels that would have been experienced over the historical record (1900-2000) if the Plan 2014
regulation plan had been in place during the 20™ century. These data were generated by forcing the Plan
2014 regulation model with historically observed water supplies over the 20" century (IJC, 2014). These
modeled data are appended with static, quarter-monthly water levels observations from January 1 2017
through December 31 2019, which occurred after Plan 2014 had been instituted and contain two record-
setting floods (in 2017 and 2019) that are critical in the estimation of future design events. The second
dataset of modeled data is based on static water level simulations under Plan 2014 that are forced with

stochastically generated (rather than historically observed) water supplies. Specifically, 500 different 100-



year time series of stochastic water supplies were generated using time series models fit to the statistical
properties of the historical supplies, and which cover a wider range of plausible variability than the
historical supplies (IIC, 2014). The stochastic water level simulations provide a large sample of static
levels that account for Plan 2014 and can be combined with storm surge models to estimate the frequency

of total water levels on Lake Ontario.

Methods

This paper focuses on two major components of total water levels (Z) along the Great Lakes shoreline -

static water levels (W) and storm surge (S):
Z@) =w(@) +S() (1)

Storm surge is taken to be the combination of wind-driven and pressure-driven (seiche) effects on the free
surface of the lake, and includes any measured increase in hourly water levels due to wave setup. Static
water levels are taken relative to a datum, while storm surge can be interpreted as positive or negative
deviations from that static water level. All quantities above are considered on an hourly time step ¢;
quarter-monthly static levels are converted to an hourly time step by repeating each quarter-monthly value

by the number of hours in a quarter-month (182).

A primary contribution of this paper is the development of a hierarchical Bayesian model to estimate the
distribution of surge at any location along the lakeshore, despite the limited availability of long-term
gauges. An exploratory data analysis that provides the motivation for model design is presented below
followed by a description of the model formulation. Uniquely, the proposed approach combines gauge-
based data with data from a lake hydrodynamic model to help estimate the spatial autocorrelation of
model parameters, but bases the magnitude of model parameters only on the gauge-based data, in order to
avoid the propagation of numerical model bias. A second contribution of this work is an approach to
combine the results of the Bayesian surge model with the distribution of highly seasonal, auto-correlated,
and managed static water levels to estimate design events for total water levels (i.e., compound flood
events), with uncertainty, at any location along the shoreline. This approach is described further below.
Importantly, in this approach I assume independence between the static water level and storm surge
distributions, besides any correlation between the two processes associated with seasonality in storm
activity and water supplies. That is, I model the distribution of static levels and surge independent of each

other, by month, and then combine those distributions across months to estimate the likelihood of key



design events for total water levels. Figure 1 provides an overview of the methods and applications of

different datasets.

Exploratory Data Analysis to Support Storm Surge Model Design
Mixture Models of the Distribution of Surge Events

In order to estimate design events for total water levels, it is important to consider the joint impact of
static levels and storm surge. During periods of high static levels, small surge events that are not
considered extreme (e.g., 0.025-0.050 meters, or ~ 1-2 inches) may still substantively add to flood risk if
the static level is already encroaching on the foundations of shoreline structures. This highlights the need
to model the entire distribution of storm surge (not just tail events), and to combine that storm surge
distribution with the distribution of static levels to estimate the risk associated with total water level
events. This situation presents a challenge, because it is not straightforward to model the entire
distribution of storm surge accurately. As an example, Figure 2 shows the empirical distribution of hourly
storm surge for the Olcott gauge in January. The data generally follow a bell curve shape, but exhibit
greater kurtosis than can be modeled with a Gaussian distribution. A Student-t distribution is better able
to capture the bulk distribution of the data. However, in the tails of the distribution (inset of Figure 2), the
Student-t distribution overestimates the likelihood of some of the largest surge values. While this
deviation appears small, it can significantly influence the estimated likelihood of low probability events,
which are of greatest interest. For example, if 50 years of January hourly surge at the Olcott gauge are
randomly sampled from the normal and Student-t distributions presented in Figure 2, the maximum
sampled value across those two probability models differs by over 0.2 meters (not shown). Past work has
shown that mixture distributions are effective at correcting discrepancies in model representations of the
bulk and tail of a distribution (Behrens et al., 2004; Scarrott and MacDonald, 2012). Figure 2 shows a
fitted mixture distribution that combines a Student-t distribution for the central range of surge values with
a generalized Pareto distribution for the upper tail. While this approach can impose a slight discontinuity
in the density function, it helps adjust the rate of decay in the tail of the distribution and provides the best
fit for the data shown. This type of mixture distribution will form the basis of the proposed Bayesian
model. A key challenge addressed in this work is the estimation of mixture model parameters at locations

without gauged data, discussed next.

Challenges of Estimating Storm Surge Distributions across the Great Lakes Shoreline
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As described earlier, the distribution of storm surge varies along the Great Lakes shoreline, depending on
the climatological wind speed and direction, lake depth, and other local factors. One strategy to estimate
the distribution of surge along the shoreline is to estimate the distribution of surge at each of the available
gauges, and then to use the distribution estimated at the nearest gauge for a location of interest. This
approach, while straightforward to apply, assumes that the distribution of storm surge exhibits significant
spatial autocorrelation around the entire shoreline. This may or may not hold, particularly in regions of
significant transition (e.g., moving from the southern to eastern shore of Lake Ontario, where wind fetch
can vary significantly over relatively short distances compared to gauge spacing; Mason et al., 2018). An
alternative strategy is to estimate surge distributions specific to a location of interest using spatially
resolved hourly water level data from the LOOFS nowcast, which integrates meteorological data across
the entire lake. However, this approach is sensitive to model error. Figure 3 shows three years of hourly
storm surge at the eight long-term water level gauges, as well as LOOFS estimates of storm surge at those
same locations. In many cases, the variability in LOOFS storm surge appears to match that of the gauges,
but at some locations (e.g., Oswego, Toronto) the LOOFS estimates significantly underestimate the
observed variability. Figure 4 provides a spatial representation of this bias across the entire lakeshore,
showing the frequency that surge exceeds a fixed threshold of 0.025 m (~1 inch) for both for LOOFS grid
cells and the available gauges in four different months throughout the year. Figure 4 highlights how there
are downward biases in the LOOFS frequency of surge events around Toronto and Oswego, and upward

biases near Cape Vincent and Kingston.

Figures 3 and 4 suggest that the direct use of the LOOFS data in estimating storm surge distributions may
lead to biased estimates, depending on the location of interest. This result highlights the importance of
using gauged data directly in the estimation process. However, the LOOFS data still can provide value in
extreme event estimation along the shoreline. Specifically, the LOOFS data can help estimate the degree
of spatial autocorrelation in surge, which is difficult to infer from the sparse set of gauges available along
the shoreline. Because the LOOFS integrates meteorological data along the entire shoreline, it provides a
unique estimate of how quickly storm surge behavior varies over space, and this information on spatial
autocorrelation can be accurate even if the magnitude of surge in the LOOFS is biased. The Bayesian
model described next presents an approach to combine spatial information from the LOOFS with gauged

observations to support the estimation of mixture distributions for storm surge along the entire shoreline.

Hierarchical Bayesian Model of Storm Surge
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The proposed Bayesian model of storm surge is fit using hourly, gauged-based storm surge data, and
regionalizes storm surge distributions to locations across the entire Lake Ontario shoreline. The model has
two primary components: 1) a Student-t distribution for the central range of surge values and 2) a Peaks-
Over-Threshold (POT) model for the upper tail of surge events. The spatial variability of parameters for
both model components are captured using Gaussian processes, with priors informed by spatial
autocorrelation observed in the LOOFS modeled data. Because climate and storm surge behavior vary

seasonally, the model described below is applied separately for each month of the year.

Bulk and Tail Distribution of Storm Surge

Let S;(t) be the hourly storm surge in hour ¢ and location i, where locations around the entire lakeshore

are discretized based on the same 5 km resolution as the LOOFS modeled data (i.e., i=1,...,M, with
M=178). Long-term water level gauges are present at some subset of these locations, G = { glg €

{1,...M }} and the remaining locations are considered ungauged. The goal is to estimate storm surge

distributions at all M locations given only gauged data at the subset of locations G.

For the bulk distribution, assume that S; follows a scaled t distribution:
Si~t(0y, vi) (2)

where g; and v; are the scale and degrees of freedom associated with site i.

Let u; be a threshold for the i” location that separates the bulk distribution from the tail distribution, and
S ps s _ . '
define {Pi_l, PP, e, Pi’Ni} as the sample of NV; surge peak values at site i that are greater than ;. Note that

surge values greater than ; are first declustered by requiring 24 h between the end of one surge event
(i.e., sequence of exceedances) and the beginning of another event. Surge peaks are defined as the
maximum surge within an event. Then, surge peak exceedances are defined as the difference between the

surge peaks and the threshold, ¥;° = P} —u;.

If the threshold u; is high enough, the distribution of ¥;° approaches the generalized Pareto distribution
(GPD; Pickands, 1975):
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Y ~GPD(t;, &) 3)

where 1;, §; are the scale and shape parameters for site i, respectively. Note that a modified (threshold-

invariant) scale can be defined as T, = t; — u;§;, which will be considered below.

To ensure the GPD is approximately valid, the threshold u; is selected using mean residual life plots
(Coles, 2001) applied to each site. These plots for each of the eight long-term water level gauges (not
shown) suggest that u; must vary by month to support the GPD approximation, but not by location.
Therefore, a single threshold u for all gauges is selected by month, with #=0.075 m for October through
May, and #=0.05 m for June through September.

Next, define {X is_l, X 52, v X lSK} to be the number of surge peaks for site i over K years of data (1980-2019
in this study). Generally, such count data is assumed to follow a Poisson distribution, but preliminary
analyses suggest that the counts of surge peaks are too dispersed (Ver Hoef and Boveng, 2007) to be
modeled effectively as Poisson distributed (i.e., the variance exceeds the mean). Therefore, in this study I

assume surge peak counts follow a negative binomial distribution:
X$~NegBin(4;,k;) 4)

where A; is the mean rate of occurrence and k; is the dispersion parameter. As k; becomes larger, the

variance of X; approaches the mean, and the distribution converges to the Poisson distribution.

Spatial Model and Prior Distributions

The parameters for each of the distributions described above need to be estimated at all M locations
around the lakeshore. Following past work (Stedinger and Lu, 1995; Martins and Stedinger, 2000;
Mailhot et al., 2013), I assume that a single regional shape parameter for the GPD is applicable to all
sites, such that &; = £. This regional shape is given a relatively uninformative uniform prior distribution

between -0.3 and 0.3.
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For all other parameters, Gaussian processes are used to model their spatial variability. Let 8; be a generic
parameter representing any of the parameters at site i from the set {0, v;, T, 4;, k;} and define 6;,,, =

log 6;. I model the vector of values 8,4 across the M sites as multivariate normal:

B10g~MVN (itg,,,.%0,,, ) 5)

Here, ,uglogis a vector of repeated mean values (i.e., the same mean for all sites), while Zglog isa
covariance matrix. The covariance Zglog (d) between any two locations separated by a distance d is

estimated via an exponential covariance function:
20, (d) = pre™%2¢ (6)

where ¢, is the variance and ¢, is a scaling parameter. Note that pg log’ ¢, and ¢, are defined separately

for each parameter in the list {g;, v;, T,, 4;, K; }-

The above formulation assumes that the model parameters {o;, v;, T,, A;, k; } vary smoothly across space
with some degree of spatial autocorrelation that is reflected in the parameter ¢, .If ¢, = 0, then no spatial
autocorrelation exists, and the best estimate of any given parameter at some ungauged site j is given by

the mean estimate pg log (after appropriate back-transformation). However, as ¢, increases, nearby

parameters become correlated; in this case, estimates of 6;,, at an ungauged site will depend on the
values of that parameter at all other sites, including sites with observed data (sites in set G). In this way,

the model will estimate 6; ;,4 at the ungauged site based on a balance between the unconditional mean
10104 and the values 6}, estimated at gauged sites, with more emphasis given to 8;,4 at nearby gauged

sites as ¢, increases.

To inform the estimate of ¢, for each model parameter, I quantify the spatial autocorrelation of
parameters based on the LOOFS data. That is, I fit scaled t, GPD, and negative binomial distributions to
the hourly surge, peak surge exceedance, and peak surge count data for each of the M=178 LOOFS grid
cells. All estimation is conducted via maximum likelihood. Peak surge events for the LOOFS are
identified using a grid-cell specific threshold equal to the 99.5™ percentile of surge values by month at
that grid cell. Grid cell specific thresholds are required because in several months, mean residual life
plots suggested that no single threshold can support the asymptotic GPD assumption for peak surge

exceedances at all grid cells (not shown). GPD scale parameters for the LOOFS are converted to modified
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(threshold independent) scale parameters to ensure that their spatial covariance structure can be mapped

to the modified scale parameters of the gauged data.

For each parameter estimated using LOOFS data (i.e., one of the parameters from the set
{o,v,%,u, k}LOOFS | generically denoted §-09FS), I randomly sample estimates for M/2 = 89 locations
without replacement. Using the parameter estimates for those locations, I apply a logarithmic

o

transformation (to derive L OFS

¢%OOFS

, and via maximum likelihood

gOF $) and estimate HGZLOC}JOFS, (l)fo
and Equations 5-6. This is repeated 1,000 times, creating an empirical distribution for each of those three
parameters. A gamma distribution is then fit to the samples of ¢p5°%FS_ This gamma distribution is used as
the prior distribution for ¢, in the Bayesian model. In this way, the LOOFS data is used to define prior
knowledge of the spatial autocorrelation in each model parameter. Note that the prior of ¢, for the mean
rate A of the negative binomial distribution is estimated based on the spatial autocorrelation in the LOOFS
site-specific threshold uF?%FS, rather than AX9°FS, This is because 17997 will vary across the lake based
on variations in local storm surge dynamics and the site-specific threshold u¥%FS, while for the gauged
data with constant threshold, A; will only vary across space due to local storm surge dynamics. The
threshold uF?9FS, which is calculated as a site-specific percentile, will also vary only due to local storm

surge dynamics in the LOOFS model, and likely better reflects the spatial autocorrelation that would be

seen in A;.

All other parameters (ig log and ¢, for each of g,v, T, 1, and k) are given relatively uninformative uniform

priors, rather than being based on the estimates from the LOOFS data. This approach is taken because the
LOOFS-based estimates of pg log and ¢, exhibit biases compared to at-site model fits to the gauged data,
and so constructing priors for these parameters based on the LOOFS data may propagate these biases into
final posterior estimates for each parameter. Instead, I isolate my use of the LOOFS data to learn only

about the spatial autocorrelation of model parameters, rather than their magnitudes.

Design Event Estimation of Total Water Levels

To estimate the distribution of total water levels at a site, two steps are required: 1) the bulk (Student-t)
and tail (GPD/negative binomial) distributions estimated for that site need to be connected into a mixture

distribution that captures the full hourly distribution of surge events; and 2) that mixture distribution
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needs to be combined with the distribution of static water levels. Other studies have suggested methods to
achieve these steps. For instance, in Mazas et al. (2014), the tail distribution of peak surge events was first
converted into a distribution of sequential values (based on a model of peak surge event duration) before
being combined with the bulk distribution to form a mixture distribution of hourly surge. That mixture
distribution was then convoluted with the distribution of hourly static levels (tidal levels in that study) to
create the distribution of total water levels. However, in the present work such an approach is made more
difficult by three challenges: 1) The static water levels are based on quarter-monthly levels that have been
disaggregated to an hourly time step, and therefore exhibit extremely high autocorrelation at the hourly
level. This autocorrelation complicates the convolution and inference of total water level design events. 2)
Due to significant and out-of-phase seasonality between static levels and surge, bulk and tail distributions
are estimated separately by month. Cross-correlation across months, particularly for static levels that are
highly auto-correlated throughout the year, needs to be considered when estimating annual return period
events for total water levels. 3) The convolution of distributions for static levels and surge is
computationally demanding, making it difficult to propagate parametric uncertainty into the final
distribution of total water levels, particularly when parametric uncertainty is quantified using Monte Carlo

simulations of the posterior distribution for each parameter.

Given the challenges above, this study takes an alternative, sampling based approach that is conceptually
straightforward and computationally manageable. The sampling approach is targeted towards the
distribution of annual maxima of total water levels at a site of interest (site i), and can be achieved via the

following steps:

1. A times series of static water levels W is sampled at a quarter-monthly time step over a long
record (100 years) and disaggregated to an hourly time step. In this work, I sample one of the 500
different 100-year stochastic water level simulations (see Section 2.3). Each of these series
reflects a plausible realization of static water levels under Plan 2014.

2. For each month and year of static water level data, a sample is drawn from the posterior

. . . sam sam, ~sam, sam, sam,
distribution of storm surge model parameters, {al. e Y L b p}. A

site-specific scale parameter Tl-s 4P is derived from ‘Eis 4MP pased on the posterior sample &54™P
and the threshold u for that month ( Tis amp = ”is amP 4 ygsamp)
3. Uniform random deviates ry,...,rz between 0 and 1 are sampled for all H hours in the current

month and year.
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4. Each uniform deviate r, for hour % is compared to the probability of occurrence for a peak surge

samp samp

L T where [ equals the number of hours in the current month. If r;, > = ]

event, , then a

samp

sample is drawn from the Student-t distribution with parameters ais amp, vis AP If 7, < .

then a sample is drawn from the GPD distribution with parameters Tis amp gsamp

5. For samples drawn from the Student-t distribution that are greater than the threshold u, these
samples are discarded and resampled until all such samples are below u.

6. The hourly static levels and samples of storm surge are added together to form an hourly time
series of total water levels for the current month and year. Note that this sampling approach
assumes independence between surge and static levels in a particular month.

7. Steps 2-6 are repeated for all months within a year, and the annual maxima of that year is saved.
This is done for every year available in the static water level dataset. Note that the distribution of
surge varies by month in this sampling procedure, and the quarter-monthly static water level
simulations account for seasonality. Therefore, the changing risk of compound flood events is
captured correctly across different times of year.

8. Steps 1-7 are repeated many times (e.g., 1000) in order effectively sample from the posterior

distribution of surge parameters.

It is worthwhile to note that the sampling of hourly storm surge in steps 3-5 is akin to sampling from a
mixture of probability distributions: (s) = pm;(s) + (1 — p)m,(s). Here, n(s) is the distribution of
hourly surge, which is developed as a mixture of the bulk distribution, 7;, and the tail distribution, 1,

with mixing probability p. The mixing probability is determined by the rate parameter of the negative
samp
binomial distribution, p = =% T and a random draw from either the bulk or the tail distribution is

determined by comparing the random deviate r;, to that mixing probability. The only caveat is that

samples from the bulk distribution above the threshold u are discarded and resampled.

The result of the above methodology in steps 1-8 is an ensemble of annual maxima time series of total
water levels. Each member of the ensemble has length n equal to the number of years available in the
static water level time series (in this study, 100 years). From this ensemble of annual maxima series,
design events associated with a specific return period can be estimated empirically, with uncertainty, by

sorting each ensemble member and calculating percentiles of total water levels associated with that return
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period (empirically estimated as T = nﬁ—i} with j equal to the rank of the sorted data). The uncertainty in

return levels will reflect uncertainty in both the static levels and the posterior distribution of storm surge
parameters at a given site. In this work, I leverage simulations from a previously created stochastic
simulation framework of static water levels for Lake Ontario under Plan 2014 to quantify static water
level uncertainty. If no such model exists, then a time series model of static levels should be created and

used to capture the auto-correlated nature of static levels across months.

The sampling scheme proposed above ignores the fact that peak surge events (those drawn from the GPD)
usually occur in clusters. Therefore, the resulting samples do not fully characterize the hourly distribution
of total water levels. However, if the only goal is to sample the annual maxima of hourly total water

levels, it is not problematic to ignore persistence in peak surge events because I am only interested in the

samp

maximum value of the event. If no peak surge events occur within a given month (i.e., rj, > = ] for all

h € {1, ..., H}), then maximum surge values for that month are based on samples from the bulk (i.e.,

Student-t) distribution of hourly surge.

3.4. Application

The Bayesian model of storm surge is developed in the STAN probabilistic coding language. Posterior
distributions are evaluated using the Hamiltonian Monte Carlo sampling method (Duane et al., 1987).
Three chains are run for all parameters with overdispersed initial values using 2,500 burn-in simulations
and 2,500 iterations afterwards. Convergence is assessed based on chain mixing using the Gelman and

Rubin convergence criterion (Gelman and Rubin, 1992).

In the results below, I first show the spatial autocorrelation in model parameters inferred from the LOOFS
data, and demonstrate how this information propagates into the posterior distribution of storm surge
parameters for different months of the year. I then validate the fitted Bayesian model for storm surge at
the eight available long-term gauges along the Lake Ontario shoreline. Finally, I examine return levels
and their uncertainty for total water levels at two specific ungauged locations (near Sodus Point, NY and
Prince Edward County, CA). In addition to the proposed mixture model, I also consider the distribution of

annual maxima total water levels if samples of storm surge are drawn exclusively from the Student-t
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distribution estimated for the ungauged locations. This comparison serves to highlight how the mixture

model for surge helps constrain the uncertainty around the most extreme total water level design events.

Results and Discussion
Spatial Model and Posterior Distributions

Figure 5 shows Moran scatterplots (Anselin 1996) for each of the six parameters, by month, estimated via
maximum likelihood at the M=178 grid cells using LOOFS data. The Moran scatter plot shows the
original parameter against a weighted average of that parameter at neighboring locations (i.e., spatially
lagged parameter), where the weights are higher for closer locations and are based on inverse Euclidean
distance. A positive relationship in the scatter is indicative of positive spatial autocorrelation, while no
relationship in the scatter indicates that the parameter has little or no spatial autocorrelation. Recall that
because the LOOFS data requires a grid-cell specific threshold, I examine the spatial autocorrelation in
this threshold, rather than the mean rate of occurrences of peak exceedances used in the negative binomial
model. Figure 5 shows that in all months, there is significant spatial autocorrelation in the LOOFS
threshold and the scale of the Student-t distribution. There is also non-trivial spatial autocorrelation in the
modified scale of the GPD, the dispersion parameter of the negative binomial distribution, and the
degrees of freedom parameter of the Student-t distribution in most months. There is no significant spatial
autocorrelation in the GPD shape parameter, justifying the modeling choice above to use a single regional

shape for all sites.

The spatial autocorrelation in the LOOFS parameter estimates are summarized in gamma prior
distributions for ¢, in the Bayesian model. Figure 6 shows example priors for two parameters (v, the
degrees of freedom parameter for the Student-t distribution; and A, the mean rate of occurrence parameter
for the negative binomial distribution) and two months (January and July). Recall that smaller values of
¢, indicate less spatial autocorrelation. Consistent with Figure 5, the priors in Figure 6 show higher
autocorrelation (i.e., higher densities for larger values of ¢,) for A compared to v. In addition, there is a
high degree of certainty that spatial autocorrelation in v is low, while for A there tends to be a larger
spread in ¢,. For both parameters, spatial autocorrelation tends to be higher in the cold season compared

to the warm season. However, this is not always the case (see Figure 5).
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In the Bayesian inference, the priors for ¢, are combined with the spatial autocorrelation inferred for
parameters across the gauged sites to determine the posteriors of ¢,, and consequently, the posteriors for
parameters at all sites across the lake. This can be seen in Figure 7, which shows the posterior mean
estimates for each of the spatially varying model parameters, {a, v, %, 1, k}, for January and July. The
posterior means at the grid cells associated with the gauged sites are highlighted separately. Figure 7
demonstrates how posterior mean estimates at gauged sites propagate into the estimates at ungauged sites
over relatively large distances for parameters with higher spatial autocorrelation. For example, the mean
rate of occurrence for exceedances (4) in January is highly spatially autocorrelated, which manifests in
the slow transitions in posterior mean estimates between gauges. Conversely, this same parameter is less
spatially autocorrelated in the summer, and consequently there are faster transitions from estimated values
at the gauged sites to the global mean at nearby ungauged sites. A similar pattern is seen for other
parameters with only moderate spatial autocorrelation (o, v). These more abrupt transitions at specific
gauges could be caused by sampling variability in certain model parameters, e.g., the degree of freedom
parameter (v) that can be highly sensitive to outlier surge values. Alternatively, the location of a particular
gauge could have some unique properties that alter the behavior of hourly water levels at that specific site.
For example, the gauges at Toronto and Cobourg in Canada are located in harbors, while the gauges at
Cape Vincent and Kingston are located at the inlet to the St. Lawrence River. The hydrodynamics at those
locations could uniquely influence surge behavior, and this might explain some of the more abrupt

transitions for certain parameters at those sites.

Model Validation and Total Water Level Design Events

Figures 8 and 9 show the goodness of fit of Bayesian model estimates for each of the eight gauges. Figure
8 shows probability plots of the peak surge exceedance data and the generalized Pareto distribution with
posterior mean estimates for (t, £); probability plots for all hourly surge values and the Student-t
distribution with posterior mean estimates for (g, v); and histograms of exceedance counts and fitted
negative binomial densities with posterior means for (4, k). All results are shown for the month of
January. For all sites and all variables, the models with posterior mean parameter estimates provide very
good fits to the data. Formal goodness of fit tests are provided in Figure 9 for all months. Here,
Kolmogorov-Smirnov (KS) tests are conducted to assess goodness of fit for the GPD and Student-t
distributions with posterior mean parameter estimates, while a Chi-Square test is used to assess goodness
of fit for the negative binomial distribution. Figure 9 shows the distribution of p-values of these tests
across all sites for each month. Results suggest that both the fitted GPD and negative binomial

distributions provide adequate fits to the data at the vast majority of site-month combinations. KS tests on
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the bulk distribution suggest poor model fits at most sites in all months. However, this result is an artifact
of sample size. There are tens of thousands of hourly surge values for each site and month combination,
and so even very small deviations between the fitted Student-t distribution and the data will lead to
rejections of the null hypothesis under the KS test (Johnson and Wichern, 1992). However, as shown in
Figure 8 (and Figure 2), a Student-t distribution does provide a very reasonable fit for the bulk

distribution of the hourly surge data.

To confirm out-of-sample performance, the Bayesian model was re-estimated without data from the
Oswego gauge. The Bayesian model was then used to regionalize GPD parameters to the Oswego
location, and the (posterior mean) estimated model was evaluated against storm surge magnitudes at that
location (Figure 10). For comparison, GPD distributions fit at the two nearest gauges on either side of the
Oswego gauge (Cape Vincent and Rochester) were applied to the Oswego site. Figure 10 shows
probability plots for surge in spring and autumn months (March and October) when storms are more
active. The results suggest that the Bayesian model produces reasonable out-of-sample estimates of the
storm surge distribution at the Oswego site, especially when compared to the use of the fitted GPD at the
nearest gauge (Cape Vincent). The Bayesian model also leads to moderate improvements over the use of
the fitted GPD at the Rochester gauge (the second nearest). In other months (not shown), the Bayesian
model estimates are either equivalent to or slightly better than the use of the GPD estimated at the

Rochester gauge.

To this point, all model evaluation has been conducted using posterior mean parameter estimates.
However, uncertainty quantification is a major benefit of Bayesian modeling. In Figure 11, the full
posterior distribution of storm surge model parameters is propagated into the estimates of total water level
design events, along with uncertainty in static water levels, as described in Section 3.3. Return levels,
with 95% uncertainty intervals, are shown for two ungauged locations near Sodus Point, NY (Figure 11a)
and Prince Edwards County, ON (Figure 11b) under two cases: 1) using the proposed mixture model of
surge, and 2) using storm surge samples drawn exclusively from the Student-t distribution estimated at
the ungauged location (i.e., no mixture with a GPD targeted for tail events). These models are compared
against historic (1900-2000 + 2017-2019), annual maxima water level data at a quarter-monthly time step
(see Section 2.3; recall that hourly historical data that accounts for Plan 2014 operations is not available).
Figure 11c shows the difference in median return level estimates between the two sites (Sodus Point —

Prince Edward County) for the two different probability models.
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Three major insights emerge from Figure 11. First, median estimates from both models and both sites
general predict larger return levels than suggested by the observed, quarter-monthly data for small design
events (< 5-year return periods), but align with or only slightly exceed the empirical return levels for
larger events (Figure 11a,b). This is unsurprising because for more frequent events, it is highly likely that
storm surge (which is accounted for by the models but not the quarter-monthly observations) would add
significantly to the total water level. However, for less frequent quarter-monthly events (e.g., those
greater than 75.5 m, a level that can cause widespread flooding), it is simply less likely that a large hourly

surge value would occur concurrently with that high quarter-monthly level.

Second, the mixture model and Student-t only model predict similar median return levels across the full
range of return periods at both sites, with the Student-t only model generally exceeding the mixture model
by between 2 and 4 cm (Figure 11a,b). However, the models differ significantly in their uncertainty
bounds, especially for the largest events. For instance, for Sodus Point (Figure 11a), the Bayesian mixture
model estimates the upper bound of the 95% uncertainty interval for the 100-year event at 76.5 m, while
the model based entirely on the Student-t distribution estimates this upper bound at 77.5 m (a meter
higher). The latter is unrealistically high. For instance, in the 50,000 years of stochastic quarter-monthly
data (without storm surge), the maximum level reached is 76.66 m. The maximum hourly storm surge
observed between 1980 and 2019 at the two nearest gauges to Sodus Point NY is 0.34 m and 0.40 m,
respectively. Therefore, even with storm surge, it is highly unrealistic that the 100-year total water level
event would reach 77.5 m. The uncertainty bounds estimated by the model using only the Student-t
distribution are too wide because that single distribution cannot accurately model both the spread in the
bulk distribution and in the tails. The fitted distribution is overly influenced by the central range of values,
leading to overestimated probabilities of very large surge values (see Figure 2). Conversely, the mixture
model is able to tailor a separate GPD distribution to the tails, thus constraining probability estimates of
the largest values. The result is a more realistic upper bound on the highest return levels for total water

level events.

Finally, when comparing the return levels between Sodus Bay, NY and Prince Edward County, CA, both
the mixture and Student-t only models agree that compound flood risk is higher at Sodus Bay, NY (Figure
11c). Return level differences range near 0.075 m for smaller return periods and grow to between 0.15-

0.20 meters for the highest return periods. The higher flood risk at Sodus Bay is attributable to more
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storm surge at that site. Specifically, the Bayesian model estimates that the frequency of surge events over
the threshold (i.e., the mean rate of surge occurrence, A1) is substantially larger at Sodus Bay than Prince
Edward County, ON between the months of March through June. These months coincide with the time of
highest static water levels on Lake Ontario, thus increasing the compound risk of high static water and

high surge events at Sodus Point NY compared to Prince Edward County, ON.

Conclusions

This study forwarded two major contributions that add to a developing literature around improved flood
frequency approaches with uncertainty for coastal engineering (Gonzalez et al., 2019), tailored for the
unique circumstances observed on the Great Lakes. First, this work developed a hierarchical Bayesian
model that can estimate storm surge distributions, with uncertainty, across the Great Lakes shoreline.
Uniquely, the model uses prior distributions for parameters controlling spatial autocorrelation to leverage
credible information from hydrodynamical models of the Great Lakes, without propagating biases
embedded in those modeled data. This approach highlights a key strength of Bayesian modeling, where
the use of information can be tailored based on its credibility through carefully crafted prior distributions.
The Lake Ontario case study highlighted some interesting features of storm surge, including distinct
seasonality in both the magnitude and spatial autocorrelation of storm surge model parameters. The model
was also able to capture adequately the behavior of surge across all available gauges on the lake, both in

the central range and tail of their distributions.

In addition, this work advanced a new approach to estimate design events for total water levels at
ungauged sites in the Great Lakes basin, taking into account the highly seasonal and auto-correlated
nature of static water levels, static water level management through control structures, and uncertainty in
both static water level and storm surge distributions. The proposed approach is directly generalizable to
the other Laurentian Great Lakes, which have similar gauging networks, operational forecast systems,
regulated static water levels, and stochastic static water level datasets (IJC 2012). Importantly, the
approach to model separately and then combine storm surge and static level distributions provides a way
to support coastal flood risk assessments in cases when static water level management changes, as
recently was the case in both the Upper Great Lakes (IJC 2012) and on Lake Ontario (IJC 2014). Results
from this study showed the importance of accounting for storm surge when developing total water level
design events, especially for more frequent return periods. In addition, results highlighted the importance

of correct distributional assumptions when estimating uncertainty bounds around the most extreme design
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events. As shown in Figure 11a,b, the final return level used for design of capital-intensive projects (e..,
seawalls, bulkheads, etc.) can be significantly influenced by these modeling choices, especially if a

conservative return level estimate is used based on the estimated uncertainty bounds.

While the results of this work are promising, several limitations require additional discussion. First, it is
important to recognize that the Bayesian model regionalizes the behavior of surge around the entire
lakeshore based on observed surge at a limited number of gauged locations. Any unique factors effecting
surge behavior at a particular gauge (e.g., hydrodynamics within a harbor) could negatively impact the
regionalization process to other, open-water locations. The Bayesian model was designed to reduce this
impact by accounting for the degree of spatial autocorrelation observed across gauges for different
seasons, but these impacts can likely never be eliminated. Likewise, further model adjustments would be
needed to estimate surge specifically within embayments or other adjacent water bodies separated from

Lake Ontario by barrier beach systems.

The total water level design events estimated using the proposed model are based on storm surge and
static water level datasets that reflect stationary conditions. The stochastic water level dataset does not
account for changes in the Great Lakes water balance that could occur under climate change, including
increased evaporative water loss, shifts in seasonality due to changes in snow accumulation and melt, and
changes in regional precipitation (Hayhoe et al., 2010; Gronewold et al. 2013; Lofgren and Rouhana,
2016; Byun and Hamlet, 2018). Rather, the stochastic water levels used here for design event estimation
only account for natural variability in the system, not long-term change. Future work is needed to develop
a similar dataset of stochastic levels that can account for both natural variability and systematic climate
change, including uncertainty around those climate changes. However, the methods forwarded in this
study are immediately applicable if such future static level scenarios are available, which is a unique
benefit of the approach. Similarly, the historic hourly water levels used to estimate storm surge models do
not account for potential changes in surge due to climate change, e.g., shifts in wind speeds or storm
tracks across different seasons (Desai et al., 2009). Additional work is needed to explore the credibility of

these projected changes and their potential effects on total water level design estimates.

Finally, the total water level design events estimated using the current model do not account for wave

runup. Wave activity can add significantly to total water levels and flooding along the shoreline, and
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current guidelines for total water level frequency analysis correctly emphasize the need to incorporate the
impact of waves (FEMA, 2014). However, wave runup is significantly influenced not only by local
bathymetric and other nearshore conditions, but also by design specifications of shoreline protection
infrastructure. Therefore, wave runup needs to be calculated on a parcel basis taking into consideration
data on local conditions and infrastructure, making regionalization of such a model difficult. In addition,
any proposed model to account for wave runup in total water level calculations should consider the
correlation between wave activity and surge, which both are associated with storm activity and wind
events (Paprotny et al., 2018), as well as possible trends in wave activity due to climate variability and

change (Grieco and DeGaetano, 2019). These efforts are left for future work.
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Figure Captions

Figure 1. Flowchart of the methodology and application of different datasets.

Figure 2. Empirical distribution of January, hourly storm surge at the Olcott gauge, along with fitted
normal, Student-t, and mixture distributions. The orange box delimits the area of the distribution
highlighted in the inset.

Figure 3. Gauge-based and LOOFS-based hourly storm surge at eight locations on Lake Ontario.

Figure 4. Frequency (expressed as a percentage) that hourly storm surge exceeds a fixed threshold of
0.025 m (~1 inch) at each LOOFS grid cell, as well as at each of the eight long-term gauges.

Figure 5. Moran I plots for LOOFS parameters, including GDP modified scale, GDP shape, negative
binomial dispersion, threshold value, Student-t scale, and Student-t degrees of freedom. Different colors
show values for different months (cold months in blue, warmer months in red).

Figure 6. Gamma prior distributions for ¢, applied to v, the degrees of freedom parameter for the
Student-t distribution, and A, the mean rate of occurrence parameter for the negative binomial
distribution. Priors are shown separately for the months of January and July.

Figure 7. Bayesian posterior mean estimates of parameters that vary across the lake for the months of
January and July.

Figure 8. Goodness of fit for Bayesian posterior mean estimates of generalized Pareto, Student-t, and
negative binomial models at the eight gauged locations in January. For the GPD and Student-t
distributions, goodness of fit is shown with probability plots against the surge peak exceedances and
hourly surge values, respectively. For the negative binomial, goodness of fit is shown by overlaying the
fitted density on the histogram of the number of surge peak events across years.

Figure 9. Distribution of p-values for Kolmogorov-Smirnov tests - applied to Student-t (bulk) and GPD
(POT) fits, and Chi Square tests - applied to the negative binomial (POT) fit. The distribution of p-values
is shown for Bayesian posterior mean estimates across all eight gauged sites for each month.

Figure 10. Goodness of fit for out-of-sample Bayesian posterior mean estimates of the generalized Pareto
model at Oswego NY. Goodness of fit is shown with probability plots against the surge peak
exceedances, and is compared against the goodness of fit based on (maximum likelihood) estimated
parameters at the two nearest gauges (Cape Vincent and Rochester).

Figure 11. Return level plot of total water levels for a) Sodus Point, NY and b) Prince Edward County,
ON Canada. Median estimates (solid) and 95% uncertainty intervals (dashed) are shown for models that
account for storm surge using a mixture of Student-t and GPD distributions, and using only a Student-t
distribution. ¢) The difference between median return levels at Sodus Point, NY and Prince Edward
County, ON Canada for both the mixture and Student-t only models.
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